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Abstract

We determine the complete set of rational integers z,y that satisfy the Thue
inequality |2® + z2y — 2zy® — 3| < 108

1 Introduction

A few years ago A. Petho [P] described a method to determine the ’small’ solutions of a
Thue inequality in a very eflicient way. As an example he determined the solutions of

|$3 + 2y — 2zy* — y3| < 200

with jy| < 10°® (which is considered to be ’small’). His method is based on the ob-
servation that for such a solution z,y (apart maybe from a few easily found very small
solutions) the quotient S 1s a convergent from the continued fraction expansion of a root
of the polynomial associated to the Thue inequality (in the case of Pethd’s example this
polynomial is > + ¢ — 2t — 1). In fact, the corresponding partial quotient in this con-
tinued fraction expansion must be extremely large compared to |y|, and from explicit
computations one can simply see that this does not happen in the given range for |y|.

Recently, the explicit upper bounds for the solutions of Thue inequalities, that can
be derived from the theory of linear forms in logarithms of algebraic numbers, have been
sharpened considerably, a.o. by A. Baker and G. Wiistholz [BW]|, whose results we will
use below. This might lead one to find out whether the continued fraction method of
Pethoé would be able in reasonable time to reach all the way up to the upper bound, and
thus find all the solutions. More specifically, Pethd asked (his question reached me via
H.J.J. te Riele) for a complete solution of the Thue inequality

(1) 2 + 2%y — 22y — %] < 10°

*The author is grateful to A. Petho and H.J.J. te Riele for suggesting the problem, and for discussions
and encouragement.



in z,y € Z, this time without an a priori bound on |y|. Finding all the solutions to (1)
would be a considerable extension of the results in Pethé’s paper [P].

For inequality (1), we will derive below an explicit upper bound for |y|, but unfortu-
nately this bound is very large (initially we find exp(6.76717 x 10'%)). Although the type
of results on which this bound is based are being sharpened over and over again, it is
not to be expected that these methods of the theory of linear forms in logarithms will be
able to provide bounds that are essentially much smaller. Maybe one could have some
hope that for the solutions of (1) the upper bound exp(10'°) for |y| could be reached in
the near future, but probably not much better than that.

If we would try the idea of Pethd’s paper [P] to treat (1), we would end up with
the following. When |y| is large enough (below we find |y| > 1550750), then ~ is a best
approximation of one of the roots of t*+¢% —2¢ — 1, and thus in principle the solutions in
certain prescribed ranges can be found as convergents from the simple continued fraction
expansion of these roots. Moreover, it follows that the partial quotient corresponding to
this convergent must be large compared to the denominator |y| (larger than c|y| for some
constant ¢). Numerators and denominators of convergents tend to grow exponentially,
and a few million of the partial quotients are not too hard to compute. This would
roughly cover the range for |y| up to exp(10%) or maybe to exp(107).

However, the upper bound to be reached is so large that one would need a number
of partial quotients which is of the order of magnitude of 10'®, which is way too much.
Even if we adopt the bound exp(10'°) for |y|, we would need a number of partial quotients
which is of the order of magnitude of 10'°, and this too seems totally out of reach by the
present state of hardware and software.

Nevertheless, in this note we will completely solve the Thue inequality (1), under the
additional condition that z and y are coprime. The solutions with ged(z,y) > 1 can then
easily be recovered. Qur approach is different from that of Pethd in [P]. We will view
the Thue inequality (1) as a set of one million Thue equations, viz.

(2) 2+ 2’y — 22y’ — y* =k,

for k € {1,2,...,10%}, and solve each of these Thue equations by the nowadays routine
method outlined in [TW1] (this method has been incorporated in the KANT software).
Note that by changing signs of z and y it is not necessary to consider negative k, and
obviously there are no solutions with & = 0 other than the trivial solution z = y = 0.
Further, if (z,y) is a solution of (2), then so are (—z — y,z) and (y,—z — y), with the
same k. This implies that we may restrict ourselves to solutions with zy > 0.

In comparison with Petho’s method, our method has the disadvantage that we have to
repeat a solution procedure for very many values of &, whereas in the continued fraction
method the parameter & almost playes no role at all. But we will see that we can exclude
over 92% of the values for k at a very early stage, and that we have to perform a highly
uniformized computational procedure for the remaining cases. Thus this procedure leads
in only a few hours of computer time to a considerable reduction of the upper bound for
ly| (in fact, to 1.77311 x 10!, as we will find below). To find the solutions below this
reduced bound can then best be done by the continued fraction method of Pethé [P].
This time no more than 25 convergents are needed. Thus we find that with the present



state of theory and technology, our method for solving the Thue inequality (1) seems
more efficient than the continued fraction method.

We follow essentially the line of reasoning outlined in [TW1], adapted to deal with
the special situation of many Thue equations that differ only in the constant term k, but
not in the binary form. We will give full details of our proof below. Here’s our main
result.

Theorem 1 The Thue inequality (1) has exactly 8430 solutions z,y € Z satisfying
ged(z,y) =1 and zy > 0.
In Table 1 below' we list those solutions satisfying max{|z|, |y|, |z + y|} > 10*.

We do not list all the solutions of (1) because that would take too much space.
But note that it is easy to compute the solutions with ged(z,y) > 1 or zy < 0 or
max{|z|, |y, |z+yl} < 10% and thus find the complete list of solutions from the statement
of Theorem 1.

We also list in Table 2 below the solutions for which there are at least three other
solutions with the same value of 2° + 2%y — 2zy? — ¢°.

2 Computations in a cubic field

Put 6 = 2cos %?T = 1.24697..., and K = Q(8). Then 6® + 6% — 260 — 1 = 0, and the
following data are well known: the discriminant of K is 49, the field is Galois, and the
automorphism o : § — 8% — 2 generates the Galois group, a set of fundamental units is
given by {6, ()}, a basis for the ring of integers Ok is given by {1,8,8%}, and the class
group is trivial.

Equation (2) is thus equivalent to

(3) z —yl = af™a(0)",

where o runs through a complete set of generators of integral ideals of K with norm
satisfying 1 < Na < 10%, and m,n € Z are unknowns. Because of the coprimeness
condition, the Prime Ideal Removing Lemma (Lemma 1 of [TW2]) tells us that we do
not have to consider primes p that remain prime in Ok, and that the only ramifying
prime, 7, can occur in k£ with exponent at most 1.

So our first task is to compute all splitting primes below 10, and find generators of
prime ideals lying above them. Then we have to form all possible products of these ideals
such that the norm of the product is < 10°. Pari-1.38 on a 486/33 PC took about 4 hours
to complete this job. The number of splitting primes is 26218, and the number of &’s is
79689 up to conjugates. Of them, 69722 are not divisible by the prime ideal above the
ramifying prime. Counting with conjugates, the number of a’s is 3 - 79689 — 2 = 239065
(where we subtract 2 because & = 1 equals its own conjugates). We won’t bore the reader
with listing them all.

1The tables can be found at the end of this paper.



3 Estimating linear forms in logarithms
The so-called Siegel identity, relating the three conjugates of z — y8, reads

(o(8) — o*(8)) (z — yb) + (¢*(0) — 0) (z — yo(8)) + (8 — 0(8)) (= — yo*(8)) = 0.
We use

o(0) — o*(8) = (1 — 20 — 6*) o(9),
a2(0) - 8= (1—20—6’2),
8 — o(6) = (1 — 20 — 6%) 6o(0)
and (3) to obtain from the Siegel Identity the so-called unit equation
z —yf

(4) _Gz(a)9—m+2n+lo_(9)—2m+n+l — 1=

o(a) ;‘W.

We will show that the right hand side of this equation is extremely small.
Note that ¢ acts on the solutions as follows:

z—yd — z-yo(8) = o(0)((—z—y)— z0)
— z—yo}(0) = 67y —(—z—y)d),

hence if (z,y) is a solution of (2), then so are (—z — y,2) and (y,—z — y). Of these
three there is exactly one with zy > 0. So from now on, on changing the sign of k if
necessary, we may assume that z > 0 and y > 0. Notice that without loss of generality
we may assume a lower bound for y, as long as it is explicit and small enough to admit
enumeration techniques for finding the solutions with y below this lower bound.

Qur first lemma shows that z — ¥ is in absolute value the smallest of the three
conjugates.

Lemma 1 Ify > 141, then
|z - y8] < |z —ya(B)], |z —yb| < |z —yo?()].

Proof. By o(f) = ~0.44504 ... we have |z — yo(8)| = 2 + y|o(8)] > 0.44504 |y|, and by
o%(6) = —1.80193... we have [z — yo*(6)| = z + y |o*(#)] > 1.80193 |y|. Hence

|| < 108
|z — yo(0)| |z — yor(#)] — 0.44504 - 1.80193 y2’

|z —yb| =

and if ¥y > 141 this is less than 0.44504 y. a

The second lemma shows that in fact z — y@ is extremely near to 0, whereas its two
conjugates are far away from 0.



Lemma 2 [fy > 1000 then

(5) 0.19370y~% < |z — y#| < 775375y~2
(6) 0.84601y < |z —yo(f)] < 1.69281y
(7) 1.52445y < |z — yo®(6)| < 3.04970y

Proof. The left hand side of (6) follows by
ylf —o(0) < |z —yb| + |z — yo(0)]

and Lemma 1, and similarly we find the left hand side of (7). Then, as in the proof of
Lemma 1 we obtain the right hand side of (5):

10° > |k} = |z — yf||z — yo(0)| |z — yo*()] > 0.84601 - 1.52445y°.
-Further, the right hand side of (6) follows by y > 1000 from

775375
|z — yo(9)| < |z — yo(8)] + y|f — o(8)| < ( 7 + 1.69203) Y,

and similarly we find the right hand side of (7). Finally, the left hand side of (5) follows
by
1< k| = [z — ybl|z — yo(0)] |z — yo?(8)| < 1.69281 - 3.04970 4.

O
Lemma 2 shows that the absolute value of the right hand side of the unit equation
(4) is extremely small indeed. Now we put

p=—-m+2n+1, g=-2m+n+1,

and we introduce the linear form in logarithms

o*(e)

o)

Then the left hand side of the unit equation (4) can be written as e¥* — 1, and we obtain
that A is extremely near to 0. Indeed, we have the following lemma.

A =log + plog 0| + qlog |o(8)].

Lemma 3 [fy > 1000 then

8) A] < 916931 y~2.
Proof. By (4), (5) and (6) we have
—o*(a) 775375
———6P5(0)" — 1 2ol e
(e 000 0.sagor ¥ < 016509y
If y > 1000 then 916509y~> < 0.000916509. If |e! — 1] < 0.000916509 then [t| <
1.00046]e* — 1], so with t = A we obtain the result. a



4 Derivation of the initial upper bounds

The next step is to establish relations between y and the coefficients p, g of the linear
form A.

Lemma 4 [fy > 1000 then

—27.75774 + 4.62220logy < p < 4.58732 +4.62221logy,
—12.47042 + 1.26019logy < g < 6.15354 + 1.26020log y.

Proof. Equation (3) implies

( 1ltfgg llﬂf—_ ;;((?)II ) - ( lg)gg Iﬁ((z))ll ) ! ( lfgg IEZ((H'-‘?))ll loinlg Tét’?)l ) ( " ) ’

hence

()=(2 1))+
(Toare " Joromms. ) (rasleyal el N+ ().

If y > 1000 then (6) and (7) imply that log |z — yo(8)| > 0 and log |z — yo?(8)| > 0, and
further we computed that for all our a’s

lal, |o ()], |o*(e)| € [1,546.876).

Now the result follows easily by (6) and (7). O

We even can get rid of the ¢, and we find that p is nonnegative.
Lemma 5 Ify > 24020 then max{|p|, |q|} = p.

Proof. At once from Lemma 4. O

The theory of linear forms in logarithms of algebraic numbers provides a lower bound
for [A|. We can choose here from a variety of results. The result of A. Baker and G.
Wiistholz [BW] that we use has a particularly easy statement, is explicit and very general,
and gives very good bounds.

Lemma 6 [f y > 24020 then
|A| > exp (—5.34505 x 10" log p) .

Proof. Apply Lemma 5 and the main result from [BW], with n = 3, d = 3, and note
that b’ (—(ﬂl) < 5.83331, and A(8) = A'(a(9)) = 1. O

a{a) 3

For |A] we now have an upper bound by Lemma 3, and a lower bound by Lemma 6.
They can be glued together by Lemmas 4 and 5, to obtain absolute upper bounds for all
the parameters.



Theorem 2
ol < 3.12792 x 10'°, |q| < 8.52799 x 10'°, y < exp (6.76717 x 10'°).

Proof. If y < 1000 then all solutions are easily found, and the inequalities follow by
enumeration. If 1000 < y < 24020 then they follow from Lemma 4. If y > 24020 then on
the one hand we have Lemma 6, and on the other hand Lemmas 3, 4 and 5 yield

— 4.58732
. 45873)

[A] < 916931 exp ( 169201

The upper bound for |p| follows from comparing these upper and lower bounds for |A],
and then Lemma 4 gives the upper bounds for y and |g}. (]

5 Reduction of the upper bounds

At this point the problem has become a finite one. But the upper bounds of Theorem 2
still are very large. Fortunately a method is known to reduce the bounds considerably.
We will describe this method, originally due to A. Baker and H. Davenport [BD], in terms
of lattices (cf. [TW1]).

Theorem 3

lpl < 124, |q| <38, vy <1.77311 x 10™.

Proof. Consider the lattice ' = {Ax|x € Z?}, with

1 0
A= ( [10%log [6]] [10%° log |o(8)]] )

and for each a the point

0
vo ( fommefz] )

Here [-] means rounding to an integer in some sense. Note that

2207243102830329807250391208292517545473 32140 16160,
—8095869160447127125588813 84774 8677849031 89231 26386.

[10%01og |8]] =
[1050 log |a(9)|] =

A crucial point here is that the lattice I' does not depend on a. Hence we have only
one lattice for all our 239065 different «a’s.

For any solution p, ¢ of inequality (8) in Lemma 3, we consider the point

(5)-4(2)



Then
a*(a)

o(a)
and we see that A is relatively close to 10°°A, namely, the rounding to an integer and
Theorem 2 give us

2= (100108 |7 | 4 5 [10%bog 0] + 4 [10° o (0],

(9) |A—10°°A| <1+ |p| + |q} < 3.98072 x 10'6.

Our aim now is to find the distance between the point y, and the nearest lattice
point, because that will give us a lower bound for the length of the vector ( z ) But

then we first have to exclude a few exceptional cases, in which the point y, is extremely
close to a lattice point. These are just the cases of & = 1 and the three a’s with norm

equal to 7, the ramifying prime.

If « = 1 then y, = 0, and hence y, = A( g ) € I'. This corresponds to the

solution p = 0,¢ = 0.

Ifa=—1+20+62 then y, = _A( {1] ) - ( é ), which is almost in I'. This case

corresponds to p=1,¢=0.
fo=0(-1+20+6?)=—-2-0+6* theny,=A ( (1] ) € I, and this corresponds
top=0,g=1.

If o =c%(—1+20+6%) =3—60—26° then ya:.A( :} ) - ( _11 ),whichis
almost in ['. This case corresponds to p = —1, ¢ = —1.

In all the other cases we will show that in fact the distance between the point y, and

the nearest lattice point is of the size of v/det ' 22 10%°, as can generically be expected.
We computed a reduced basis of the lattice I'. This basis turned out to be

—86891 9585843504 98794 47659 2664008026 06666 3029901361
7536967934761474768341168 /' 70064 19181 46661 70387 49382

This computation can be done in far less than 1 second on a PC. Now let

d([,yo) = min |Ax — ¥,
xeZ?

P

where in the four exceptional cases the one particular point x = is excluded from

the set over which we take the minimum. It took about 4 hours on a 486/33 PC to
compute this number d{I', y,) for each of the a's, using the above reduced basis. Notice



that for each « the points y, and y(_i4264+62)o differ at most by 1 in each coordinate.
Hence we only had 3 - 69722 — 2 = 209164 different cases to compute. They all satisfied

d([,ya) > 1.64991 x 107
It follows by Theorem 2 for all cases but the four exceptional ones, that
(1.64991 x 10%)” < d (T, ya)* < p* + A? < (3.12792 x 10%)* 4 2,

whence
|A| > 1.64490 x 10%2.

Then by (9)
[A] > 107 (JA] = |A — 10°°A[) > 1.64489 x 1072,

Finally, (8) now yields the reduced upper bound for y, and Lemma 4 the bounds for |p|
and |g|. a

6 Finishing the proof

We now finish the proof of Theorem 1.

Proof. We only have to find the solutions below the bound of Theorem 3. As remarked
above, if y > 1550730, then i is a convergent from the continued fraction expansion
[ag, a1, az,...] of 8. We need only 25 convergents, because the denominator of the 25th
convergent is 4.39288 ... x 10'%, which is already larger than the upper bound 1.77311 x
10" of Theorem 3. All the convergents £ with 1550750 < y < 1.77311 x 10! satisfy

v
|z3 + 22y — 2zy® — | > 10°. We give the first 30 partial quotients and convergents of #

in Table 3 at the end of this paper.

Hence y < 1550750, and this bound is small enough to admit enumeration of the
remaining cases. Note that for given y, inequality (5) does not leave much room for z.
So this enumeration costs only a few minutes on a PC. In this way we found the result
announced in the theorem, and computed the Tables below. a

As a corollary we have that the total number of solutions satisfying ged(z,y) =1 is
3-8430 = 25290. Further, it is easy to show that the total number of solutions satisfying
zy 2 0, but not necessarily x,y coprime, 1s 13860, and that the total number of solutions
without any condition thus is 3 - 13860 = 41580.

Finally, as an illustration, we remark that for the largest solution z = 715371,y =

573683 we have the following data:
z — yf = 0.00000055234 ... (in fact, ZXL is the 9th convergent from the continued
fraction expansion of 8), z — yo(8) = 970683.9..., z — yo?(d) = 1749112.0..., a =
115 - 370 — 916%, z — y0 = af"0(8)%°, p = 44, ¢ = 12, and A = 2.532... x 1073, which
is exceptionally small indeed for a linear form with coefficients p, ¢ of this size.
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Tables

z ¥y —T-—y k
~-5675 —4551 10226 | 446251
5781 4636 —10417 | 283529
—=5882 =4717 10599 | 320333
-5983 —4798 10781 | 966547
-6089 —4883 10972 | 172817
—-6296 —5049 11345 2521
=6397 =5130 11527 | 728657
6710 5381 —12091 | 411139
—6311 —5462 12273 | 399463
6917 5547 —12464 | 656867
7124 5713 —12837 | 930103
7225 5794 —-13019 30491
-7326 -5875 13201 | 920899
—-7533 —6041 13574 | 712781
7639 6126 —13765 | 570661
—T7947 —6373 14320 | 212563
8154 6539 —14693 81901
8568 6871 —15439 | 765449
-8669 —6952 15621 | 549779
9083 7284 -16367 | 155063
—-9391 -7531 16922 | 993511
9497 7616 —17113 | 998857
—9598 —7697 17295 | 614257
—9805 —7863 17668 | 199037
10012 8029 -—18041 | 253331
10941 8774 —19715 | 380059
-11456 —9187 20643 | 705083

Table 1: The solutions of the Thue inequality (1) with ged(z,y) = 1, zy 2 0, k& =
z? 4 2%y — 22y* — ¢* > 0, and max{|z|, |y|,|z + y|} > 10*. With (z,y) also (—z —y,z)

x y -z -y k|

—11663 —-9353 21016 | 105407
11870 9519 —21389 | 538601
—12385 —9932 22317 | 724723
12799 10264 ~23063 | 732311
13521 10843 —-24364 | 95159
137238 110609 —24737 | 964543
—14243  —11422 25665 | 695687
=15172  —12167 27339 | 640303
15379 12333 —27712 | 429493
—17030  —13657 30687 | 431033
17237 13823 —31060 | 924427
—17959  —14402 32361 | 270439
19817 15892 —35709 | 179437
20746 16637 —37383 | 475427
=24255  —-19451 43706 | 530711
26113 20941 —-47054 | 268199
—-30551 —24500 55051 | 901349
32409 25990 —58399 | 346319
38705 31039 —~69744 | 398671
45001 36088 —81089 | 410129
51297 41137 —92434 | 365567
57583 46186  —103779 | 249859
63889 51235 —115124 47879
—70185  —56284 126469 | 255499
—76481 ~-61333 137814 | 675401
—134074 -107519 241593 | 721519
—325741 —261224 586965 | 525091
715371 573683 —1289054 | 937789

and (y, —z — y) are solutions of (1), with the same k.

10



I k] (= v)
181(—4,-5), (14,11), {-16,-13), (-101,-81)
559|(8,1), (9,5), (~4,-7), (-31,-25), (929, 745)
118%|(-1,-10), {-5,-9), (—19,-16), (-56,-45)
1247 (22,17), {—13,-12), (-23,-19), (-308,-247)
1261 |{-9,-10), {11,5), (34,27), (~61, -49), (=76, —861)
2059 [ (-4, -11), {(13,6), (33,26), (-722,-579)
2899 |(14,5), (—19,-17), (-22,-19), (126,101)
8497 |(-5,-18), (20,7), (63,50), (227, 182)
17753 (34, 23), (-57,—47), (-70,-57), (1343,1077)
26767 | (32,17), (—23,-27), (257,208}, (—4438, —3559)
38429 (36, 19), (—20,-29), (-74,-61), (211,169)
47879 (-9, -32), (36,1), (—14,-31), (-54,-47), (133, 106), (—369, —296), (63889,51235)
60229 | (38,11}, {—25,—34), (-94,-77}, (—179,-144)
67159 |(-1,-40), {(-29,-36), (-—55,—49), (-919,-737)
76609 ! (41, 8), (50,31), (—49,-46),  (—54,-49), (—319, —256)
94627 [ (45,17}, (72,53), (—40,-43), (-142,-115)
127387 | (—19, —43), (-28,—43), (—43,-47), ({-153,-124)
151003 | (—67, —61), (148,117), (—187,-151), (-682,~547)
163241 ((—1,-54), (—41,-49), (-71,-64), (-350,-281)
164891 | (61, 35), (89, 66), {—51,-53), (-793,-636)
212563 [(173,137), (-175,—142), (-232,-187), (-662,—531), (—7947,—6373)
220597 | (87,62), (-53,-57), (123,95), (227, 181)
241613 ((-2,-61), (99,73}, (—32,-53), (—223,-180)
208831 [ (89,61), (-71,-69), (—113,-96), (1065,854)
380393 (—41,-62), (-81,-77), (103,73), {135, 103}
406783 (73, 27), (99,68), (—32,-63), (119,88), (640,513)
424801(-9,-70}, (-31,—64), (-86,—-81), (-—145,-121)
474643 | (-27, -67), (—48,-67), (-67,—73), (248,197)
664651 | (85,9), (-11,-81), (-25,-76), (517,414), {—241,~-196), ({-—1939, —1555)
729611 | (91, 40), (117,79}, (=121, -108), (-779, —625)}

Table 2: The solutions of the Thue equations (2) with ged(z,y) = 1, 2y > 0, for those
ke {1,2,...,10%} for which at least four such solutions exist.

n | an ] y | k|| nlen| z y | k
0] 1 1 1 —1|[15] 18 422175922 338558803 957329477
1| 4 5 4 1|[16 1 444748349 356660484 —819086359
2| 20 101 81 —181 |[17] 1 866924271 695219287 924626177
3| 2 207 166 197 [{ 18] 3 3045521162 2442318345 —4174958017
4] 3 722 579 —2059 |{ 19| 2 6957966595 5579855977 15978254957
51 1 929 745 559 || 20| 1 10003487757 8022174322 —12016580953
6] 6 6296 5049 2521 || 21| 2 26964942109 21624204621 65348466331
7| 10 63889 51235 a7e7e || 22| 1 36968429866 29646378943 - 41283590671
8| 5| 325741 261224 | —s25001 |23 | 2 100901801841 80916962507 299931185527
o| 2| 715371 573683 | 93779 {[ 24| 1 137870231707 110563341450 ~14221068707
10| 2| 1756483 1408590 | —3960503 || 25 | 39 | 5477840838414 4392887279057 8443033023151
TT | 1| 2471854 1982273 | 3353183 || 26 | 2 | 11093551008535 8896337809564 | —22818072480589
12| 2] 6700191 5373136 | ~8354641 || 27 | 1] 16571392746949  13289225178621 26351476483891
13| 2| 15872236 12728545 | 44488151 || 28 | 1| 27664944655484  22185563078185 | —68462532216161
14| 1| 22572427 18101681 | —4846603 || 20 | 1| 44236337402433  35474788256806 12732446673479
30 | 13 | 602737330887113 483357810416663 | —1768139351083097

Table 3: The first 30 partial quotients e, and convergents 2 of the continued fraction

expansion of § = 2cos 27, and the corresponding k = z° + z%y — 2xy® — ¢/°.
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